Dave's Math Tables: Derivative Hyperbolics ![]()  | 
| (Math | Calculus | Derivatives | Table Of | Hyperbolics) | 
  sinh(x) = cosh(x)  cosh(x) = sinh(x)  tanh(x) = 1 - tanh(x)^2  csch(x) = -coth(x)csch(x)  sech(x) = -tanh(x)sech(x)  coth(x) = 1 - coth(x)^2 | 
sinh(x) = cosh(x) : From the derivative of e^x 
Given: sinh(x) = ( e^x - e^-x )/2; 
cosh(x) = (e^x + e^-x)/2; 
 ( f(x)+g(x) ) =
 f(x) + 
 g(x); 
Chain Rule; 
( c*f(x) ) = c 
f(x). 
Solve:
sinh(x)=
( e^x- e^-x )/2 = 1/2
(e^x) -1/2
(e^-x)
= 1/2 e^x + 1/2 e^-x = ( e^x + e^-x )/2 = cosh(x)   Q.E.D
Proof of  Given: sinh(x) = ( e^x - e^-x )/2; cosh(x) = (e^x + e^-x)/2;  
Proof of  Given:  
Proof of 
cosh(x) = sinh(x) : From the derivative of e^x
 ( f(x)+g(x) ) =
 f(x) +
 
g(x); Chain Rule; 
( c*f(x) ) = c 
f(x).
Solve:
 cosh(x)= 
 ( e^x + e^-x)/2 = 1/2 
(e^x) + 1/2 
(e^-x)= 1/2 e^x - 1/2 e^-x = ( e^x - e^-x )/2 = sinh(x)       Q.E.D.
 tanh(x)= 1 - tan^2(x) : from the derivatives of sinh(x) and cosh(x)
sinh(x) = cosh(x); 
cosh(x) = sinh(x); tanh(x) = sinh(x)/cosh(x); Quotient Rule.
Solve:
 tanh(x)= 
 sinh(x)/cosh(x)= ( cosh(x) 
sinh(x) - sinh(x) 
cosh(x) ) / cosh^2(x)= ( cosh(x) cosh(x) - sinh(x) sinh(x) ) / cosh^2(x) = 1 - tanh^2(x)       Q.E.D.
 csch(x)= -coth(x)csch(x), 
sech(x) = -tanh(x)sech(x), 
coth(x) = 1 - coth^2(x) : From the derivatives of their reciprocal functions
Given: 
sinh(x) = cosh(x); 
cosh(x) = sinh(x); 
tanh(x) = 1 - tanh^2(x); csch(x) = 1/sinh(x); sech(x) = 1/cosh(x); coth(x) = 1/tanh(x); Quotient Rule.
 csch(x)= 
 1/sinh(x)= ( sinh(x) 
1 - 1 
 sinh(x))/sinh^2(x) = -cosh(x)/sinh^2(x) = -coth(x)csch(x)
 sech(x)= 
 1/cosh(x)= ( cosh(x) 
1 - 1 
 cosh(x))/cosh^2(x) = -sinh(x)/cosh^2(x) = -tanh(x)sech(x)
 coth(x)= 
 1/tanh(x)= ( tanh(x) 
1 - 1 
 tanh(x))/tanh^2(x) = (tanh^2(x) - 1)/tanh^2(x) = 1 - coth^2(x)